The frequency response of a linear time-invariant filter is given by the formula

$$
\begin{equation*}
\mathcal{H}(\hat{\omega})=\left(1-e^{-j \hat{\omega}}\right)\left(1-e^{j \pi / 3} e^{-j \hat{\omega}}\right)\left(1-e^{-j \pi / 3} e^{-j \hat{\omega}}\right) \tag{1}
\end{equation*}
$$

(a) Write the difference equation that gives the relation between the input $x[n]$ and the output $y[n]$.
(b) What is the output if the input is $x[n]=\delta[n]$?
(c) If the input is of the form $x[n]=A e^{j \phi_{e}}{ }^{j \hat{\omega} n}$, for what values of $-\pi \leq \hat{\omega} \leq \pi$ will $y[n]=0$ for all n ?
(d) The frequency response in Equation (1) is written as a product of factors suggesting that it could be implemented as a cascade of several systems. By suitably grouping the factors and multiplying them together, obtain a representation as the cascade of two systems each of which has only real filter coefficients. Give the frequency responses and impulse responses of the two systems and draw a block diagram of the cascade system.

