Consider again the cascade system in Figure 1 with

$$
h_{1}[n]=\delta[n]-\delta[n-1] \quad \text { and } \quad h_{2}[n]=u[n]-u[n-5] .
$$

(a) Determine $H_{1}(\hat{\omega})$, the frequency response of the first system.
(b) Determine $H_{2}(\hat{\omega})$, the frequency response of the second system.
(c) By convolution, show that $h[n]=h_{1}[n] * h_{2}[n]=\delta[n]-\delta[n-5]$ (see part part (c) of Problem 7.5 with $\alpha=1$). From $h[n]$ determine $H(\hat{\omega})$ the frequency response of the overall system (from $x[n]$ to $y[n]$).
(d) Show that your result in part (c) is the product of the results in parts (a) and (b); i.e., $H_{1}(\hat{\omega}) H_{2}(\hat{\omega})=$ $H(\hat{\omega})$.

