The two-sided spectrum of a signal $x(t)$ is given in the following table:

frequency (ω)	complex phasor
-200π	$1+\sqrt{3} j$
-100π	X_{-1}
0	5
ω_{1}	$2 e^{-j \pi 6}$
200π	X_{2}

(a) If $x(t)$ is a real signal, what are X_{1}, X_{-2}, and ω_{1} ?
(b) Plot the spectrum of this signal as a graph.
(c) Write an expression for $x(t)$ involving only real numbers and cosine functions.

