A signal $x(t)$ is given by the equation

$$
x(t)=[A+\cos (40 \pi t)] \cos (200 \pi t-\pi / 2) .
$$

The signal $x(t)$, which is given above as a product, can also be expressed as a sum of sinusoids of the form

$$
\begin{equation*}
x(t)=\sum_{k=1}^{N} D_{k} \cos \left(\omega_{k} t+\phi_{k}\right), \tag{1}
\end{equation*}
$$

where the ω_{k} 's are different freqeuncies.
(a) Determine the number of cosine terms in $x(t)$, i.e. the value of N in Equation (1).

$$
N=
$$

\qquad
(b) What are the lowest and highest frequencies of all the sinusoids in the sum form [Eq. (1)] of $x(t)$?
lowest $\omega_{k}=$ \qquad
highest $\omega_{k}=$ \qquad
(c) The spectrum of $x(t)$ contains a component at frequency $200 \pi \mathrm{rad} / \mathrm{sec}$ with complex amplitude $-2 j$. What is the numerical value of A ?
$A=$
(d) Plot the two-sided spectrum of $x(t)$ on the graph below. Be sure to label all components of the spectrum with their frequency (in radians $/ \mathrm{sec}$) and their complex amplitude. You may need to use your result from part (c) to label the plot properly.

