PROBLEM:

A real signal

 $x(t) = A\cos(200\pi t + \phi) + B\cos(\omega_1(t - \tau)) + C\cos(\omega_2 t) + D$

has the following two-sided spectrum:
$$5e^{-j\pi/2} \qquad \qquad 5 \qquad \qquad 5e^{j\pi/2}$$

$$-100 -75 -50 \qquad 0 \qquad 50 \qquad 75 \qquad 100$$
frequency in Hz
(a) Determine $A, B, C, D, \omega_1, \omega_2, \phi$, and τ the signal $x(t)$ with the above spectrum.

$$-100$$
 -75 -50 0 50 75 100 frequency in H (a) Determine $A, B, C, D, \omega_1, \omega_2, \phi$, and τ the signal $x(t)$ with the above spectrum.

(b) The signal x(t) is periodic. Determine the fundamental frequency f_0 , of the signal x(t).