Circle the correct answer to each of these short answer questions:

1. Suppose that the discrete-time signal $x[n]$ is $x[n]=8 \cos (0.3 \pi n-\pi / 4)$ determine the frequency (in Hz) of the analog signal $y(t)$ that will be reconstructed by the ideal D-to-C converter operating at a sampling rate of 20 samples/second.
(a) $f=3 \mathrm{~Hz}$
(b) $f=6 \mathrm{~Hz}$
(c) $f=17 \mathrm{~Hz}$
(d) $f=34 \mathrm{~Hz}$
(e) $f=0.3 \mathrm{~Hz}$
(f) $f=0.15 \mathrm{~Hz}$
2. A signal $x(t)$ is defined by: $x(t)=\sum_{k=-50}^{50} k^{2} e^{j 2 \pi k t}$. The Nyquist Rate for sampling $x(t)$ is
(a) 1 Hz
(b) 2 Hz
(c) 25 Hz
(d) 50 Hz
(e) 100 Hz
3. For the following Matlab code: $y y=f i r f i l t([0,1,2,0,-5], \mathrm{xx})$ pick the correct difference equation for the filter being implemented.
(a) $y[n]=\delta[n]$
(b) $y[n]=x[n]+2 x[n-1]-5 x[n-2]$
(c) $y[n]=x[n]+2 x[n-1]-5 x[n-3]$
(d) $y[n]=x[n-1]+2 x[n-2]-5 x[n-3]$
(e) $y[n]=x[n-1]+2 x[n-2]-5 x[n-4]$
4. If $\mathcal{H}(\hat{\omega})$ is the frequency response of a digital filter, and the input is $x[n]=5+7 \cos (0.3 \pi n)$, then a concise way to define the output is:
(a) $y[n]=\mathcal{H}(0.3 \pi)(5+7 \cos (0.3 \pi n))$
(b) $y[n]=\mathfrak{R e}\left\{5+7 \mathcal{H}(0.3 \pi) e^{j 0.3 \pi n}\right\}$
(c) $y[n]=\mathfrak{R e}\left\{7 \mathcal{H}(0.3 \pi) e^{j 0.3 \pi n}\right\}$
(d) $y[n]=\mathfrak{R e}\left\{5 \mathcal{H}(0)+7 \mathcal{H}(0.3 \pi) e^{j 0.3 \pi n}\right\}$
(e) $y[n]=5 \mathcal{H}(0)+7 \mathcal{H}(0.3 \pi) \cos (0.3 \pi n)$
