Linearity: First Difference Filter

graphics/x1_1stDiffLinearity.png
\(x_1[n]\)
arrow.png
hdiftiny.png
\(y_1[n]\)
arrow.png
graphics/y1_1stDiffLinearity.png

graphics/x2_1stDiffLinearity.png
\(x_2[n]\)
arrow.png
hdiftiny.png
\(y_2[n]\)
arrow.png
graphics/y2_1stDiffLinearity.png
Figure 1: Two different inputs to the same system. The system is an FIR filter and therefore linear. Click on any of the above inputs, system blocks or outputs for a "close-up."
graphics/x3_1stDiffLinearity.png
\(a x_1[n] + b x_2[n]\)
arrow.png
hdiftiny.png
\(y_3[n]\)
arrow.png
graphics/y3_1stDiffLinearity.png
Figure 2: Are the scaling and superposition properties satisfied? In other words, does \(y_3[n]=ay_1[n]+by_2[n]\)? Click on the output to find out.